Python Exponentiation Tutorial | Exponentiation In Python Tutorial

Exponentiation – Exponentiation can be used by using the builtin pow-function or the ** operator. Learn More about it here.

Exponentiation using builtins: ** and pow()

Exponentiation can be used by using the builtin pow-function or the ** operator:

2**3 # 8
pow(2, 3) # 8

For most (all in Python 2.x) arithmetic operations the result’s type will be that of the wider operand. This is not true for **; the following cases are exceptions from this rule:

Base: int, exponent: int < 0:
2**-3

Out: 0.125 (result is a float)

This is also valid for Python 3.x.

Before Python 2.2.0, this raised a ValueError.

Base: int < 0 or float < 0, exponent: float != int

(-2) ** (0.5) # also (-2.) ** (0.5)

Out: (8.659560562354934e-17+1.4142135623730951j) (result is complex)

Before python 3.0.0, this raised a ValueError.

The operator module contains two functions that are equivalent to the **-operator:

import operator
operator.pow(4, 2) # 16
operator.pow(4, 3) # 64

or one could directly call the pow method:

val1, val2 = 4, 2
val1.pow(val2) # 16
val2.rpow(val1) # 16

in-place power operation isn’t supported by immutable classes like int, float, complex:

val1.ipow(val2)

Square root: math.sqrt() and cmath.sqrt

The math module contains the math.sqrt()-function that can compute the square root of any number (that can be converted to a float) and the result will always be a float:


import math
math.sqrt(9) # 3.0
math.sqrt(11.11) # 3.3331666624997918
math.sqrt(Decimal('6.25')) # 2.5

The math.sqrt() function raises a ValueError if the result would be complex:

math.sqrt(-10)
ValueError: math domain error

math.sqrt(x) is faster than math.pow(x, 0.5) or x ** 0.5 but the precision of the results is the same. The cmath module is extremely similar to the math module, except for the fact it can compute complex numbers and all of its results are in the form of a + bi. It can also use .sqrt():

import cmath
cmath.sqrt(4) # 2+0j
cmath.sqrt(-4) # 2j

What’s with the j? j is the equivalent to the square root of -1. All numbers can be put into the form a + bi, or in this case, a + bj. a is the real part of the number like the 2 in 2+0j. Since it has no imaginary part, b is 0. b represents part of the imaginary part of the number like the 2 in 2j. Since there is no real part in this, 2j can also be written as 0 + 2j.

Modular exponentiation: pow() with 3 arguments

Supplying pow() with 3 arguments pow(a, b, c) evaluates the modular exponentiation ab mod c:

pow(3, 4, 17) # 13

equivalent unoptimized expression:

3 ** 4 % 17 # 13

steps:

3 ** 4 # 81
81 % 17 # 13
For built-in types using modular exponentiation is only possible if:

First argument is an int

Second argument is an int >= 0

Third argument is an int != 0

These restrictions are also present in python 3.x

For example one can use the 3-argument form of pow to define a modular inverse function:

def modular_inverse(x, p):
"""Find a such as a·x ≡ 1 (mod p), assuming p is prime."""
return pow(x, p-2, p)

[modular_inverse(x, 13) for x in range(1,13)]

Out: [1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12]

Exponentiation: Computing large integer roots

Even though Python natively supports big integers, taking the nth root of very large numbers can fail in Python.

x = 2 ** 100
cube = x ** 3
root = cube ** (1.0 / 3)

OverflowError: long int too large to convert to float

When dealing with such large integers, you will need to use a custom function to compute the nth root of a number.

def nth_root(x, n):
Start with some reasonable bounds around the nth root. upper_bound = 1
while upper_bound ** n <= x: upper_bound *= 2 lower_bound = upper_bound // 2 Keep searching for a better result as long as the bounds make sense. while lower_bound < upper_bound: mid = (lower_bound + upper_bound) // 2 mid_nth = mid ** n if lower_bound < mid and mid_nth < x: lower_bound = mid elif upper_bound > mid and mid_nth > x: upper_bound = mid
else:
Found perfect nth root. return mid
return mid + 1
x = 2 ** 100
cube = x ** 3
root = nth_root(cube, 3)
x == root

True

Exponentiation using the math module:
math.pow()

The math-module contains another math.pow() function. The difference to the builtin pow()-function or ** operator is that the result is always a float:

import math
math.pow(2, 2) # 4.0
math.pow(-2., 2) # 4.0

Which excludes computations with complex inputs:

math.pow(2, 2+0j)

TypeError: can’t convert complex to float

and computations that would lead to complex results:

math.pow(-2, 0.5)

ValueError: math domain error

Exponential function: math.exp() and cmath.exp()

Both the math and cmath-module contain the Euler number: e and using it with the builtin pow()-function or **-operator works mostly like math.exp():

import math
math.e ** 2 # 7.3890560989306495
math.exp(2) # 7.38905609893065
import cmath
cmath.e ** 2 # 7.3890560989306495
cmath.exp(2) # (7.38905609893065+0j)

However the result is different and using the exponential function directly is more reliable than builtin exponentiation with base math.e:

print(math.e ** 10) # 22026.465794806703
print(math.exp(10)) # 22026.465794806718
print(cmath.exp(10).real) # 22026.465794806718
difference starts here ---------------^

Exponential function minus 1: math.expm1()

The math module contains the expm1()-function that can compute the expression math.e ** x – 1 for very small x with higher precision than math.exp(x) or cmath.exp(x) would allow:

import math
print(math.e ** 1e-3 - 1) # 0.0010005001667083846
print(math.exp(1e-3) - 1) # 0.0010005001667083846
print(math.expm1(1e-3)) # 0.0010005001667083417

——————^

For very small x the difference gets bigger:

print(math.e ** 1e-15 - 1) # 1.1102230246251565e-15
print(math.exp(1e-15) - 1) # 1.1102230246251565e-15
print(math.expm1(1e-15)) # 1.0000000000000007e-15

^——————-

The improvement is significant in scientific computing. For example the Planck’s law contains an exponential function minus 1:

def planks_law(lambda_, T):
from scipy.constants import h, k, c # If no scipy installed hardcode these!
return 2 * h * c ** 2 / (lambda_ ** 5 * math.expm1(h * c / (lambda_ * k * T)))
def planks_law_naive(lambda_, T):
from scipy.constants import h, k, c # If no scipy installed hardcode these!
return 2 * h * c ** 2 / (lambda_ ** 5 * (math.e ** (h * c / (lambda_ * k * T)) - 1))
planks_law(100, 5000) # 4.139080074896474e-19
planks_law_naive(100, 5000) # 4.139080073488451e-19

^———-

planks_law(1000, 5000) # 4.139080128493406e-23
planks_law_naive(1000, 5000) # 4.139080233183142e-23

^————

Magic methods and exponentiation: builtin, math and cmath

Supposing you have a class that stores purely integer values:

class Integer(object):
def init(self, value):
self.value = int(value) # Cast to an integer
def repr(self):
return '{cls}({val})'.format(cls=self.class.name, val=self.value)
def pow(self, other, modulo=None):
if modulo is None:
print('Using pow')
return self.class(self.value ** other)
else:
print('Using pow with modulo')
return self.class(pow(self.value, other, modulo))
def float(self):
print('Using float')
return float(self.value)
def complex(self):
print('Using complex')
return complex(self.value, 0)

Using the builtin pow function or ** operator always calls pow:

Integer(2) ** 2 # Integer(4)

Prints: Using pow

Integer(2) ** 2.5 # Integer(5)

Prints: Using pow

pow(Integer(2), 0.5) # Integer(1)

Prints: Using pow

operator.pow(Integer(2), 3) # Integer(8)
Prints: Using pow
operator.pow(Integer(3), 3) # Integer(27)

Prints: Using pow

The second argument of the pow() method can only be supplied by using the builtin-pow() or by directly calling the method:

pow(Integer(2), 3, 4) # Integer(0)
Prints: Using pow with modulo
Integer(2).pow(3, 4) # Integer(0)
Prints: Using pow with modulo

While the math-functions always convert it to a float and use the float-computation:

import math
math.pow(Integer(2), 0.5) # 1.4142135623730951
Prints: Using float

cmath-functions try to convert it to complex but can also fallback to float if there is no explicit conversion to complex:

import cmath
cath.exp(Integer(2)) # (7.38905609893065+0j)
Prints: Using complex
del Integer.complex # Deleting complex method - instances cannot be cast to complex
cmath.exp(Integer(2)) # (7.38905609893065+0j)
Prints: Using float

Neither math nor cmath will work if also the float()-method is missing:

del Integer.float # Deleting complex method
math.sqrt(Integer(2)) # also cmath.exp(Integer(2))

TypeError: a float is required

Exponentiation: Roots: nth-root with fractional exponents

While the math.sqrt function is provided for the specific case of square roots, it’s often convenient to use the exponentiation operator (**) with fractional exponents to perform nth-root operations, like cube roots.

The inverse of an exponentiation is exponentiation by the exponent’s reciprocal. So, if you can cube a number by putting it to the exponent of 3, you can find the cube root of a number by putting it to the exponent of 1/3.

x = 3
y = x ** 3
y
27
z = y ** (1.0 / 3)
z
3.0
z == x
True

Learn More

Must Read Python Interview Questions

200+ Python Tutorials With Coding Examples

Python Language Basics TutorialPython String Representations of Class Instances
Python For Beginners TutorialPython Debugging Tutorial
Python Data Types TutorialReading and Writing CSV File Using Python
Python Indentation TutorialWriting to CSV in Python from String/List
Python Comments and Documentation TutorialPython Dynamic Code Execution Tutorial
Python Date And Time TutorialPython Code Distributing using Pyinstaller
Python Date Formatting TutorialPython Data Visualization Tutorial
Python Enum TutorialPython Interpreter Tutorial
Python Set TutorialPython Args and Kwargs
Python Mathematical Operators TutorialPython Garbage Collection Tutorial
Python Bitwise Operators TutorialPython Pickle Data Serialisation
Python Bolean Operators TutorialPython Binary Data Tutorial
Python Operator Precedance TutorialPython Idioms Tutorial
Python Variable Scope And Binding TutorialPython Data Serialization Tutorial
Python Conditionals TutorialPython Multiprocessing Tutorial
Python Comparisons TutorialPython Multithreading Tutorial
Python Loops TutorialPython Processes and Threads
Python Arrays TutorialPython Concurrency Tutorial
Python Multidimensional Arrays TutorialPython Parallel Computation Tutorial
Python List TutorialPython Sockets Module Tutorial
Python List Comprehensions TutorialPython Websockets Tutorial
Python List Slicing TutorialSockets Encryption Decryption in Python
Python Grouby() TutorialPython Networking Tutorial
Python Linked Lists TutorialPython http Server Tutorial
Linked List Node TutorialPython Flask Tutorial
Python Filter TutorialIntroduction to Rabbitmq using Amqpstorm Python
Python Heapq TutorialPython Descriptor Tutorial
Python Tuple TutorialPython Tempflile Tutorial
Python Basic Input And Output TutorialInput Subset and Output External Data Files using Pandas in Python
Python Files And Folders I/O TutorialUnzipping Files in Python Tutorial
Python os.path TutorialWorking with Zip Archives in Python
Python Iterables And Iterators Tutorialgzip in Python Tutorial
Python Functions TutorialStack in Python Tutorial
Defining Functions With List Arguments In PythonWorking with Global Interpreter Lock (GIL)
Functional Programming In PythonPython Deployment Tutorial
Partial Functions In PythonPython Logging Tutorial
Decorators Function In PythonPython Server Sent Events Tutorial
Python Classes TutorialPython Web Server Gateway Interface (WSGI)
Python Metaclasses TutorialPython Alternatives to Switch Statement
Python String Formatting TutorialPython Packing and Unpacking Tutorial
Python String Methods TutorialAccessing Python Sourcecode and Bytecode
Using Loops Within Functions In PythonPython Mixins Tutorial
Python Importing Modules TutorialPython Attribute Access Tutorial
Difference Betweeb Module And Package In PythonPython Arcpy Tutorial
Python Math Module TutorialPython Abstract Base Class Tutorial
Python Complex Math TutorialPython Plugin and Extension Classes
Python Collections Module TutorialPython Immutable Datatypes Tutorial
Python Operator Module TutorialPython Incompatibilities Moving from Python 2 to Python 3
Python JSON Module TutorialPython 2to3 Tool Tutorial
Python Sqlite3 Module TutorialNon-Official Python implementations
Python os Module TutorialPython Abstract Syntax Tree
Python Locale Module TutorialPython Unicode and Bytes
Python Itertools Module TutorialPython Serial Communication (pyserial)
Python Asyncio Module TutorialNeo4j and Cypher using Py2Neo
Python Random Module TutorialBasic Curses with Python
Python Functools Module TutorialTemplates in Python
Python dis Module TutorialPython Pillow
Python Base64 Module TutorialPython CLI subcommands with precise help output
Python Queue Module TutorialPython Database Access
Python Deque Module TutorialConnecting Python to SQL Server
Python Webbrowser Module TutorialPython and Excel
Python tkinter TutorialPython Turtle Graphics
Python pyautogui Module TutorialPython Persistence
Python Indexing And Slicing TutorialPython Design Patterns
Python Plotting With Matplotlib TutorialPython hashlib
Python Graph Tool TutorialCreating a Windows Service Using Python
Python Generators TutorialMutable vs Immutable (and Hashable) in Python
Python Reduce TutorialPython configparser
Python Map Function TutorialPython Optical Character Recognition
Python Exponentiation TutorialPython Virtual Environments
Python Searching TutorialPython Virtual Environment – virtualenv
Sorting Minimum And Maximum In PythonPython Virtual environment with virtualenvwrapper
Python Print Function TutorialCreate virtual environment with virtualenvwrapper in windows
Python Regular Expressions Regex TutorialPython sys Tutorial
Copying Data In Python TutorialChemPy – Python package
Python Context Managers (“with” Statement) TutorialPython pygame
Python Name Special Variable TutorialPython pyglet
Checking Path Existence And Permissions In PythonWorking with Audio in Python
Creating Python Packages TutorialPython pyaudio
Usage of pip Module In Python TutorialPython shelve
Python PyPi Package Manager TutorialIoT Programming with Python and Raspberry PI
Parsing Command Line Arguments In Pythonkivy – Cross-platform Python Framework for NUI Development
Python Subprocess Library TutorialPandas Transform
Python setup.py TutorialPython vs. JavaScript
Python Recursion TutorialCall Python from C#
Python Type Hints TutorialPython Writing Extensions
Python Exceptions TutorialPython Lex-Yacc
Raise Custom Exceptions In PythonPython Unit Testing
Python Commonwealth Exceptions TutorialPython py.test
Python urllib TutorialPython Profiling
Web Scraping With Python TutorialPython Speed of Program
Python HTML Parsing TutorialPython Performance Optimization
Manipulating XML In PythonPython Security and Cryptography
Python Requests Post TutorialSecure Shell Connection in Python
Python Distribution TutorialPython Anti Patterns
Python Property Objects TutorialPython Common Pitfalls
Python Overloading TutorialPython Hidden Features
Python Polymorphism TutorialPython For Machine Learning
Python Method Overriding TutorialPython Interview Questions And Answers For Experienced
Python User Defined Methods TutorialPython Coding Interview Questions And Answers
Python Programming Tutorials With Examples

Other Python Tutorials

Leave a Comment